Logo
Overview
Freshman's Dream

Freshman's Dream

December 24, 2025
5 min read

A Freshman’s Dream

While I was reading some tropical geometry (not to be confused with topological geometry), I stumbled across the Freshman’s Dream, which states that (x+y)n=xn+yn.(x+y)^n=x^n+y^n. In standard mathematics, this is, of course, false. We know that in general (x+y)n=k=0n(nk)xkynk.(x+y)^n= \sum _{k=0}^n \binom n k x^{k}y^{n-k}. The Binomial Theorem. However, I wanted to take a closer look at this false identity.

Warning (Freshman's Dream (generally false))

For all x,yRx,y \in \Reals

(x+y)n=xn+yn,\begin{equation} (x+y)^n=x^n+y^n, \end{equation}

where n0.n\geq 0. This (false) identity only holds for n=1.n=1.

This leads to the question of which algebraic structures admit an analogue of the Freshman’s Dream? There’s many actually, but we’ll take a look at tropical geometry, of course.

Tropical Geometry

We will start by defining the elementary operations of tropical geometry.

Definition (Tropical arithmetic (addition and multiplication))

The main object of study is the tropical semiring T=(R{},,).\mathbb{T} = (\R \cup \{\infty\},\oplus, \odot). Here addition and multiplication of real numbers are defined as

xymin(x,y),\begin{equation} x \oplus y \coloneqq \min (x,y), \end{equation}

and

xyx+y.\begin{equation} x \odot y \coloneqq x+y. \end{equation}

The tropical sum\textit{tropical sum} of two numbers is the minimum of xx and yy and the tropical product\textit{tropical product} of two numbers is the sum of both numbers.

Example (Arithmetic)

The tropical sum of 22 and 77 is 22. This is written as

27=2.2 \oplus 7 = 2.

The tropical product of 44 and 88 is 1212. We write this as

48=12.4 \odot 8 = 12.
Lemma (Basic tropical rules)

Now you may have noticed that a lot of the standard rules of arithmetic also hold in tropical arithmetic. For example

xy=yx,\begin{equation} x \oplus y = y \oplus x, \end{equation}

and

xy=yx.\begin{equation} x \odot y = y \odot x. \end{equation}

That is, commutativity in tropical addition and tropical multiplication. There’s also distributivity:

x(yz)=xyxz.\begin{equation} x \odot (y \oplus z) = x \odot y \oplus x\odot z. \end{equation}

We have an identity element for ,\oplus, namely, .\infty. And an identity element for ,\odot, namely, 0.0.

x=x.\begin{equation} x \oplus \infty = x. \end{equation}x0=x.\begin{equation} x \odot 0 = x. \end{equation}

The identities involving the two identities are:

x=.\begin{equation} x \odot \infty = \infty. \end{equation}x0={0if x0,xif x<0.\begin{equation} x \oplus 0 = \begin{dcases} 0 &\text{if } x\geq 0, \\ x &\text{if } x<0. \end{dcases} \end{equation}
Proof

Soon.

Now this is about enough information. Yes, we can still extend this for polynomials and vectors, etc., but for our purposes, that isn’t necessary. We will now define tropical powers and the binomial expansion in T\mathbb{T} then prove the Freshman’s Dream in a tropical universe.

Definition (Tropical powers)

Let N={0,1,2,\N=\{0,1,2,\dots}. For xTx\in\mathbb{T} define

x00,x^0 \coloneqq 0,

and for n1n\ge 1 define

xnxxn times.x^n \coloneqq \underbrace{x \odot \dots \odot x}_{n\text{ times}}.

In particular, if xR,x\in\R, then xn=nxx^n = nx (usual sum), and if x=x=\infty then xn=x^n=\infty for all n1n\ge 1.

Definition (Binomial expansion in T\mathbb{T})

Define, for nNn\in\N,

Bn(x,y)k=0n(xnkyk).\begin{equation} B_n(x,y)\coloneqq \bigoplus_{k=0}^n \left(x^{\,n-k}\odot y^{\,k}\right). \end{equation}
Proposition ((xy)n=Bn(x,y)(x\oplus y)^n = B_n(x,y) in tropical arithmetic)
(xy)n=Bn(x,y).\begin{equation} (x\oplus y)^n = B_n(x,y). \end{equation}
Proof (Induction)

For n=0n=0, the claim is trivial: by Definition 1.6, (xy)0=0(x\oplus y)^0=0 and

B0(x,y)=k=00(x0kyk)=x0y0=00=0,B_0(x,y)=\bigoplus_{k=0}^0\left(x^{\,0-k}\odot y^{\,k}\right)=x^0\odot y^0=0\odot 0=0,

so (xy)0=B0(x,y)(x\oplus y)^0=B_0(x,y). Now we will induct on nn. For the base case n=1n=1, we have:

B1(x,y)=(x1y0)(x0y1).\begin{aligned} B_1(x,y) &=(x^1\odot y^0)\oplus(x^0\odot y^1). \end{aligned}

By Definition 1.6 again, we take x0=y0=0x^0=y^0=0, so

x1y0=x0=x,x0y1=0y=y.\begin{aligned} x^1\odot y^0 &= x\odot 0 = x,\\ x^0\odot y^1 &= 0\odot y = y. \end{aligned}

Hence

B1(x,y)=xy=(xy)1,B_1(x,y)=x\oplus y=(x\oplus y)^1,

so eqref12 holds for n=1n=1.

Suppose (xy)n=Bn(x,y)(x\oplus y)^n = B_n(x,y). Then

(xy)n+1=(xy)n(xy)=Bn(x,y)(xy).(x\oplus y)^{n+1}=(x\oplus y)^n\odot(x\oplus y)=B_n(x,y)\odot(x\oplus y).

Now expanding Bn(x,y)(xy)B_n(x,y)\odot(x\oplus y) using commutativity eqref5 and distributivity eqref6, we have:

Bn(x,y)(xy)=k=0n((xnkyk)(xy)).B_n(x,y)\odot(x\oplus y)=\bigoplus_{k=0}^n\left(\left(x^{\,n-k}\odot y^{\,k}\right)\odot(x\oplus y)\right).

Using eqref6 again inside each term we get:

(xnkyk)(xy)=(xnkykx)  (xnkyky).\left(x^{\,n-k}\odot y^{\,k}\right)\odot(x\oplus y) = \left(x^{\,n-k}\odot y^{\,k}\odot x\right)\ \oplus\ \left(x^{\,n-k}\odot y^{\,k}\odot y\right).

Therefore

(xy)n+1=(k=0nxnkykx)  (k=0nxnkyky).(x\oplus y)^{n+1} = \left(\bigoplus_{k=0}^n x^{\,n-k}\odot y^{\,k}\odot x\right) \ \oplus\ \left(\bigoplus_{k=0}^n x^{\,n-k}\odot y^{\,k}\odot y\right).

By the definition of tropical powers, for any m0m\ge 0 we have

xmx=xm+1andymy=ym+1.x^{m}\odot x = x^{m+1} \quad\text{and}\quad y^{m}\odot y = y^{m+1}.

Hence

xnkykx=xnk+1yk,xnkyky=xnkyk+1.x^{\,n-k}\odot y^{\,k}\odot x=x^{\,n-k+1}\odot y^{\,k}, \qquad x^{\,n-k}\odot y^{\,k}\odot y=x^{\,n-k}\odot y^{\,k+1}.

so

(xy)n+1=(k=0nxn+1kyk)  (k=0nxnkyk+1).(x\oplus y)^{n+1} = \left(\bigoplus_{k=0}^n x^{\,n+1-k}\odot y^{\,k}\right) \ \oplus\ \left(\bigoplus_{k=0}^n x^{\,n-k}\odot y^{\,k+1}\right).

Reindexing the second sum with j=k+1j=k+1, so j=1,,n+1j=1,\dots,n+1:

k=0nxnkyk+1=j=1n+1xn+1jyj.\bigoplus_{k=0}^n x^{\,n-k}\odot y^{\,k+1} = \bigoplus_{j=1}^{n+1} x^{\,n+1-j}\odot y^{\,j}.

We’re left with

(xy)n+1=(k=0nxn+1kyk)  (j=1n+1xn+1jyj).(x\oplus y)^{n+1} = \left(\bigoplus_{k=0}^n x^{\,n+1-k}\odot y^{\,k}\right) \ \oplus\ \left(\bigoplus_{j=1}^{n+1} x^{\,n+1-j}\odot y^{\,j}\right).

This is the \oplus-sum of all terms xn+1yx^{\,n+1-\ell}\odot y^{\,\ell} for =0,1,,n+1\ell=0,1,\dots,n+1; this might look a little strange because the middle terms =1,,n\ell=1,\dots,n appear twice, but duplicates do not change the tropical sum since uu=uu\oplus u=u. Therefore

(xy)n+1==0n+1xn+1y=Bn+1(x,y).(x\oplus y)^{n+1} = \bigoplus_{\ell=0}^{n+1} x^{\,n+1-\ell}\odot y^{\,\ell} = B_{n+1}(x,y).This closes the induction.\begin{aligned} \text{This closes the induction.} \tag*{$\blacksquare$} \end{aligned}
Theorem (Freshman's Dream (tropical version))

For all x,yTx,y \in \mathbb{T} and nNn \in N we have

(xy)n=xnyn.\begin{equation} (x \oplus y)^n=x^n \oplus y^n. \end{equation}
Proof

n=0n=0 follows trivially, (xy)0=0(x\oplus y)^0=0 and x0y0=00=0.x^0\oplus y^0=0\oplus 0=0. \newline Now let n1n\ge 1. \newline Case 1: x,yRx,y\in\R.
From Proposition 1.8 and Definition 1.7 eqref11,

(xy)n=k=0n(xnkyk).(x\oplus y)^n=\bigoplus_{k=0}^n \left(x^{\,n-k}\odot y^{\,k}\right).

Computing one general term using Definition 1.6 and eqref3 we get:

xnkyk=(nk)x+ky.x^{\,n-k}\odot y^{\,k}=(n-k)x+ky.

So

(xy)n=k=0n((nk)x+ky).(x\oplus y)^n=\bigoplus_{k=0}^n \left((n-k)x+ky\right).

Rewriting this in terms of eqref2 from Definition 1.2,

(xy)n=min0kn((nk)x+ky).(x\oplus y)^n=\min_{0\le k\le n}\left((n-k)x+ky\right).

Setting f(k)(nk)x+kyf(k)\coloneqq (n-k)x+ky. We’ll evaluate the discrete difference (ordinary subtraction in R\R).

f(k+1)f(k)=((nk1)x+(k+1)y)((nk)x+ky)=yx.\begin{aligned} f(k+1)-f(k) &=\left((n-k-1)x+(k+1)y\right)-\left((n-k)x+ky\right)\\ &=y-x. \end{aligned}

So ff is monotone in kk:

If yxy\ge x, then yx0y-x\ge 0, hence f(k+1)f(k)f(k+1)\ge f(k) for all kk, so the minimum occurs at k=0k=0:

min0knf(k)=f(0)=nx.\min_{0\le k\le n} f(k)=f(0)=nx.

If yxy\le x, then yx0y-x\le 0, hence f(k+1)f(k)f(k+1)\le f(k) for all kk, so the minimum occurs at k=nk=n:

min0knf(k)=f(n)=ny.\min_{0\le k\le n} f(k)=f(n)=ny.

In either case,

min0knf(k)=min(nx,ny)=nxny\min_{0\le k\le n} f(k)=\min(nx,ny)=nx\oplus ny

(using eqref2 in the last equality). Finally, by Definition 1.6, nx=xnnx=x^n and ny=ynny=y^n. Therefore

(xy)n=nxny=xnyn.(x\oplus y)^n = nx\oplus ny = x^n\oplus y^n.

Case 2: x=x=\infty or y=y=\infty.
WLOG x=x=\infty. By tropical addition eqref2,

xy=min(,y)=y,x\oplus y=\min(\infty,y)=y,

hence

(xy)n=yn.(x\oplus y)^n=y^n.

Also, by Definition 1.6, xn=x^n=\infty (since x=x=\infty and n1n\ge 1). So using tropical addition again eqref2,

xnyn=yn=min(,yn)=yn.x^n\oplus y^n = \infty\oplus y^n = \min(\infty,y^n)=y^n.

Thus (xy)n=xnyn(x\oplus y)^n=x^n\oplus y^n in this case as well.

This completes both cases.\begin{aligned} \text{This completes both cases.} \tag*{$\blacksquare$} \end{aligned}

Now there is a way shorter proof of this (because you can prove (xy)n=xnyn(x \oplus y)^n=x^n \oplus y^n directly from the definition), but I wanted to see how the tropical binomial expansion pedagogically collapsed.

References

  • Maclagan, D., & Sturmfels, B. (2015). Introduction to tropical geometry (Graduate Studies in Mathematics, Vol. 161). American Mathematical Society.